"PVCNSSK" GOVT. POLYTECHNIC BILASPUR at KALOL PLANNED THEORY SYLLABUS COVERAGE

PTSC-7.1

GPB		Department: Mechanical Engg. Subject:- STRENGTH OF MATERIALS (MEPC202)						
		Semester:	4 th Branch: Mechanical Engg.	Dura	tion: 3year			
SYLLA COVEI	ABUS RAGE	Total Perio	ds:- 56 Theory : 56 Practical					
Sr. Pe No.	eriod Nos	Topic	Details	Instruction Reference	Additional Study	Remai		
1. 1-	-12	Unit-I Simple Stresses and Strains	Types of forces; Stress, Strain and their nature; Mechanical properties of common engineering materials; Significance of various points on stress – strain diagram for M.S. and C.I. specimens; Significance of factor of safety; Relation between elastic constants (Formula without proof); Stress and strain values in bodies of uniform section and of composite section under the influence of normal forces; Thermal stresses in body of uniform section; Simple numerical problems on the above topics. Strain Energy: Strain energy or resilience; Formula without derivation of strain energy for the following cases: i) Gradually applied load, ii) Suddenly applied load, iii) Impact/shock load; Simple numerical problems.	Strength of Materials– D.S.Bedi, Khanna Book Publishing	Keconninendeu			
2 13	3-24	Unit-II: Shear Force & Bending Moment Diagrams:	Types of beams with examples: a) Cantilever beam, b) Simply supported beam, c) Over hanging beam, d) Continuous beam, e) Fixed beam; Types of Loads – Point load, UDL and UVL; Definition and explanation of shear force and bending moment; Calculation of shear force and bending moment and drawing the S.F and B.M. diagrams by the analytical method only for the following cases: a)Cantilever with point loads, b) Cantilever with uniformly distributed load, c)Simply supported beam with point loads, d)Simply supported beam with UDL, e) Over hanging beam with UDL, f) Over hanging beam with UDL throughout, g)Combination of point and UDL for the	Strength of Materials– R.S. Khurmi, S. Chand Company				

chueras

•

Sr No	Period Nos	Торіс	Details	Instruction Reference	Additional Study	Remark
3	25-34	Unit- III: Theory of Simple Bending and Deflection of Beams	Explanation of terms : Neutral layer, Neutral Axis, Modulus of Section, Moment of Resistance, Bending stress, Radius of curvature; Assumptions in theory of simple bending; Bending Equation $M/I=\sigma/Y=E/R$; Simple Problems involving calculations of bending stress, modulus of section and moment of resistance; Definition and explanation of deflection as applied to beams; Deflection formulae without proof for cantilever and simply supported beams with point load and UDL only (Standard cases only); Related simple numerical problems.	Strength of Materials– D.S.Bedi, Khanna Book Publishing	Recommend	
4	35-46	Unit-IV: Torsion in Shafts and Springs	Definition and function of shaft; Calculation of polar M.I. for solid and hollow shafts; Assumptions in simple torsion; Torsion equation $T/J=fs/R=G\theta/L$; Simple Problems on design of shaft based on strength and rigidity; Numerical Problems related to comparison of strength and weight of solid and hollow shafts; Classification of springs; Nomenclature of closed coil helical spring; Deflection formula for closed coil helical spring (without derivation);stiffness of spring; Simple Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils	Strength of Materials– R.S. Khurmi, S. Chand Company		
5	47-56	Unit-V: Thin Cylindrical Shells:	Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell; Derivation of expressions for the longitudinal and hoop stress; Related numerical Problems			

chrorad
(Chaman Lal)
HOD, ME

APPROVED	SIGN HOD/OIC
DATE	\cap
	23/1/24